Completely Empty Pyramids on Integer Lattices

نویسنده

  • O. N. KARPENKOV
چکیده

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Two-dimensional Faces of Multidimensional Continued Fractions and Completely Empty Pyramids on Integer Lattices

In this paper we develop an integer-affine classification of three-dimensional multistory completely empty convex marked pyramids. We apply it to obtain the complete lists of compact two-dimensional faces of multidimensional continued fractions lying in planes with integer distances to the origin equal 2, 3, 4, . . . The faces are considered up to the action of the group of integer-linear trans...

متن کامل

Completely Empty Pyramids on Integer Lattices and Two-dimensional Faces of Multidimensional Continued Fractions

In this paper we develop an integer-affine classification of three-dimensional multistory completely empty convex marked pyramids. We apply it to obtain the complete lists of compact two-dimensional faces of multidimensional continued fractions lying in planes at integer distances to the origin equal 2, 3, 4, . . . The faces are considered up to the action of the group of integer-linear transfo...

متن کامل

Convex Cones in Finite - Dimensional Real Vector

Various classes of nite-dimensional closed convex cones are studied. Equivalent characterizations of pointed cones, pyramids and rational pyramids are given. Special class of regular cones, corresponding to \continuous linear" quasiorderings of integer vectors is introduced and equivalently characterized. It comprehends both pointed cones and rational pyramids. Two diierent ways of determining ...

متن کامل

Convex cones in finite-dimensional real vector spaces

Various classes of finite-dimensional closed convex cones are studied. Equivalent characterizations of pointed cones, pyramids and rational pyramids are given. Special class of regular cones, corresponding to "continuous linear" quasiorderings of integer vectors is introduced and equivalently characterized. It comprehends both pointed cones and rational pyramids. Two different ways of determini...

متن کامل

Integer Points on Spheres and Their Orthogonal Lattices

Linnik proved in the late 1950’s the equidistribution of integer points on large spheres under a congruence condition. The congruence condition was lifted in 1988 by Duke (building on a break-through by Iwaniec) using completely different techniques. We conjecture that this equidistribution result also extends to the pairs consisting of a vector on the sphere and the shape of the lattice in its...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006